伟大的大师爱因斯坦取得了什么成就?
阿尔伯特·爱因斯坦(1879 ~ 1955),美国物理学家,犹太人,据说智商160,现代物理学的开创者和奠基人,相对论——“质能关系”的提出者,“确定性量子力学解释”(振动粒子)的捍卫者——第65438期+0999期65438+2月26日,爱因斯坦入选美国《时代》杂志“世纪伟人”。
早在16岁的时候,爱因斯坦就从书上了解到,光是一种速度非常快的电磁波。他有一个主意。如果一个人以光速运动,会看到什么样的世界场景?他不会看到前进的光,只会看到在空间振荡却停滞不前的电磁场。这可能发生吗?
联系到这一点,他很想讨论与光波有关的所谓以太问题。以太一词来自希腊,用来表示构成天空中物体的基本元素。17世纪,笛卡尔首次将其引入科学,作为传播光的媒介。后来惠更斯进一步发展了以太理论,认为承载光波的介质是以太,应该充满包括真空在内的所有空间,渗透到普通物质中。与惠更斯的观点不同,牛顿提出了光的粒子说。牛顿认为,发光体发射出一股直线运动的粒子流,粒子流对视网膜的冲击造成了视觉。18世纪盛行牛顿的粒子说,但19世纪盛行的是波动说,以太的理论有了很大的发展。当时的观点是波的传播依赖于介质,因为光可以在真空中传播,传播光波的介质就是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展。在麦克斯韦、赫兹等人的努力下,形成了成熟的电磁现象的动力学理论——电动力学,在理论和实践上统一了光和电磁现象,把光看成是一定频率范围内的电磁波,从而统一了光的波动理论和电磁理论。以太不仅是光波的载体,也是电磁场的载体。直到19年底,人们试图寻找以太,但在实验中始终没有找到以太。
但是电动力学遇到了一个大问题,与牛顿力学遵循的相对性原理不一致。相对论原理的思想早在伽利略和牛顿时代就存在了。电磁学的发展本来是包含在牛顿力学的框架内,但是在解释运动物体的电磁过程时遇到了困难。根据麦克斯韦理论,电磁波在真空中的速度,也就是光速,是一个常数。但根据牛顿力学的速度相加原理,不同惯性系中的光速是不同的,这就引出了一个问题:适用于力学的相对性原理是否适用于电磁学?比如有两辆车,一辆在向你靠近,一辆在离开。你看到前车的灯在向你靠近,后车的灯在远处。根据麦克斯韦理论,这两种光的速度是一样的,汽车的速度在其中不起作用。但根据伽利略的理论,这两项的测量结果是不同的。朝你开来的车会加速发出的光,也就是前车的光速=光速+速度;光离开汽车的速度更慢,因为汽车后面的光速=光速-光速。麦克斯韦和伽利略关于速度的说法显然是相反的。我们如何解决这个分歧?
理论物理在19世纪达到顶峰,但也隐含着巨大的危机。海王星的发现显示了牛顿力学无可比拟的理论力量,电磁学和力学的统一使物理学呈现出形式上的整体性,被誉为“庄严宏伟的建筑体系和感人至深的美丽殿堂”。在人们的心目中,经典物理学已经到了近乎完美的地步。德国著名物理学家普朗克年轻时告诉老师,他要投身于理论物理。老师劝他:“小伙子,物理是一门已经完成的科学,不会再有进一步的发展了。把他的一生奉献给这个学科,真可惜。”
爱因斯坦似乎是那个将要建造一座崭新的物理大楼的人。爱因斯坦在伯尔尼专利局期间,广泛关注物理学的前沿动态,对许多问题进行了深入思考,形成了自己独特的观点。在十年的探索过程中,爱因斯坦认真学习了麦克斯韦的电磁理论,尤其是赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理论是完全正确的,但有一个问题让他不安,那就是绝对参照系以太的存在。他看了很多书,发现所有证明以太存在的实验都失败了。爱因斯坦研究后发现,以太在洛伦兹理论中除了作为绝对参考系和电磁场的负载外,没有任何实际意义。于是他想:以太的绝对参照系有必要吗?电磁场一定要加载吗?
爱因斯坦喜欢阅读哲学著作,从哲学中吸取思想营养。他相信世界的统一性和逻辑的一致性。相对性原理在力学中已被广泛证明,但在电动力学中不能成立。爱因斯坦对物理学的两个理论体系之间的逻辑不一致提出了质疑。他认为相对性原理应该是普遍成立的,所以对于每个惯性系,电磁理论应该有相同的形式,但这里出现了光速的问题。光速是恒定的还是可变的,成为相对论原理是否普遍成立的首要问题。当时的物理学家普遍相信以太,即有一个绝对的参照系,这是受牛顿绝对空间概念的影响。19年底,马赫在《发展中的力学》中批判了牛顿的绝对时空观,给爱因斯坦留下了深刻的印象。1905年5月的一天,爱因斯坦和一个朋友贝佐讨论了这个探索了十年的问题。贝佐根据马赫主义的观点阐述了他的观点,他们对此进行了长时间的讨论。突然,爱因斯坦意识到了什么,回家反复思考,终于想通了。第二天,他又来到贝佐家,说,谢谢你,我的问题已经解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间和光信号的速度有着密不可分的关系。他找到了这把锁的钥匙,经过五周的努力,爱因斯坦向人们展示了狭义相对论。
引力透镜
引力透镜,光线在引力场中发生偏转,就像光线从空气中进入玻璃一样。玻璃可以作为镜头对物体成像,重力场也是如此。引力透镜效应是阿尔伯特·爱因斯坦广义相对论预言的现象。因为时空在大质量天体附近会发生扭曲,所以光在大质量天体附近会发生弯曲(光会沿着弯曲空间的短程线传播)。如果观测者对光源的视线中有一个大质量的前景天体,就会在光源的两侧形成两个影像,就像在观测者和天体之间放置了一个透镜。这种现象被称为引力透镜效应。引力透镜效应的观测证明阿尔伯特·爱因斯坦的广义相对论确实是对引力的正确描述。